A team of researchers from the Instituto Gulbenkian de Ciência (IGC) revealed that cells of the brain can detect the presence of malaria parasites in the blood, triggering the inflammation underlying cerebral malaria. This discovery brought to light new targets for adjuvant therapies that could restrain brain damage in initial phases of the disease and avoid neurological sequelae.
Cerebral malaria is a severe complication of infection with Plasmodium falciparum, the most lethal of the parasites causing malaria. This form of the disease manifests through impaired consciousness and coma and affects mainly children under 5, being one of the main causes of death in this age group in countries of Sub-Saharan Africa. Those who survive are frequently affected by debilitating neurological sequelae, such as motor deficits, paralysis, and speech, hearing, and visual impairment.
To prevent certain molecules and cells from reaching the brain, which would disturb its normal functioning, specialized cells from the inner lining of blood vessels, the endothelial cells, are tightly kept together, forming a barrier between the blood and this organ. Cerebral malaria results from an unrestrained inflammatory response to infection which leads to significant alterations in this barrier and, consequently, neurological complications.
Read more...