Credit: iStock, grinvalds

Significance

When multiple pathogens cocirculate this can lead to competitive or cooperative forms of pathogen–pathogen interactions. It is believed that such interactions occur among cold and flu viruses, perhaps through broad-acting immunity, resulting in interlinked epidemiological patterns of infection. However, to date, quantitative evidence has been limited. We analyzed a large collection of diagnostic reports collected over multiple years for 11 respiratory viruses. Our analyses provide strong statistical support for the existence of interactions among respiratory viruses. Using computer simulations, we found that very short-lived interferences may explain why common cold infections are less frequent during flu seasons. Improved understanding of how the epidemiology of viral infections is interlinked can help improve disease forecasting and evaluation of disease control interventions.

Abstract

The human respiratory tract hosts a diverse community of cocirculating viruses that are responsible for acute respiratory infections. This shared niche provides the opportunity for virus–virus interactions which have the potential to affect individual infection risks and in turn influence dynamics of infection at population scales. However, quantitative evidence for interactions has lacked suitable data and appropriate analytical tools. Here, we expose and quantify interactions among respiratory viruses using bespoke analyses of infection time series at the population scale and coinfections at the individual host scale. We analyzed diagnostic data from 44,230 cases of respiratory illness that were tested for 11 taxonomically broad groups of respiratory viruses over 9 y. Key to our analyses was accounting for alternative drivers of correlated infection frequency, such as age and seasonal dependencies in infection risk, allowing us to obtain strong support for the existence of negative interactions between influenza and noninfluenza viruses and positive interactions among noninfluenza viruses. In mathematical simulations that mimic 2-pathogen dynamics, we show that transient immune-mediated interference can cause a relatively ubiquitous common cold-like virus to diminish during peak activity of a seasonal virus, supporting the potential role of innate immunity in driving the asynchronous circulation of influenza A and rhinovirus. These findings have important implications for understanding the linked epidemiological dynamics of viral respiratory infections, an important step towards improved accuracy of disease forecasting models and evaluation of disease control interventions.

 

CC0 Creative Commons, Pixabay

Read more…

Download

Citation:  Virus–virus interactions impact the population dynamics of influenza and the common cold Sema NickbakhshColette MairLouise MatthewsRichard ReevePaul C. D. JohnsonFiona ThorburnBeatrix von WissmannArlene ReynoldsJames McMenaminRory N. GunsonPablo R. Murcia 

The post Virus–virus interactions impact the population dynamics of influenza and the common cold appeared first on Healthier Environment Living Program.